TB-8S

5D HEAVY DUTY WHEEL ALIGNMENT

Advantages----monitor 8 wheels simultaneously, and finish the adjustment at a time.

Exclusively for truck and bus:

5D technology overcomes all disadvantages of 2D technology, such as mismeasurement, low precision, human factors, which are caused by following reasons:

- [1] Original errors caused by wheel rim deformation cannot be eliminated by compensation;
- [2] Errors caused by wheel clamp deformation can not be eliminated;
- [3] Precision of truck should be higher than that of cars, but 2D technology makes it lower;
- [4] Different measurement results caused by different operational approaches and strength.

5D technology adopts anti-shake measurement technology. It can eliminate time errors caused by car body shake within 20 seconds, improving labor efficiency. Meanwhile, it avoids problems caused by wireless and high-frequency interference. It can be used at any indoor places.

Configuration list

Sensor (1)	Targets (8)	Wheel clamp (8)	Turntable (4)	Frame offset tool (1)	Tablet PC (1)	Wedge block (2)	Cabinet (1)	24inch wireless TV (1)
*	*	*	*	*	*	*	*	*

Traditional Heavy Duty Wheel Alignment Procedure (Dual Axles Turning Model)

- Step 1 Picture ① shows that reference is No.4 axle, adjust the toe of No.2 axle;
- Step 2 Picture ② shows that reference is No.4 axle, adjust the toe of No.1 axle;
- Step 3 Picture 3 shows that the drag link between No.1 and 2 axle makes No.1 and 2 axle parallel;
- Step 4 Picture 4 shows that the adjustment of No.3 axle individual toe.

Remarks: When installing sensors, wheels need to be lifted to make run-out compensation.

5D Heavy Duty Wheel Alignment Procedure

- Step 1 Install 8 wheel clamps and targets.
- Step 2 place two sensor boxes as the picture instructs.
- Step 3 Drive the truck forward about 8° to finish run-out compensation.
- Step 4 Get the results of 4 axles and still keep real time monitoring the change.

References	Accuracy	MeasurementRange	Total Range	
Camber	±0.02°	±8°	±8°	
Caster	±0.05°	±19°	±19°	
K.P.I	±0.02°	±19°	±19°	
Toe	±0.02°	±22.5°	±45°	

<	VehiclesPick		FastTest	FrontAxleShow	DataPrint	Kingpin le
	FrontCamber	FrantToe	FrontTota	alToe		
	firstLeftCamber	firstLettica	firstTota	Toe Tables	htToe firstRi	ghtCamber
	-3°11′	1°49	' -0°4	11' -1°	08' -1'	°32′
	secondLeftCamber	second list of	second for	(6) (2)(6)		Right Camber (
	- SECONDE PROGRAMMENT		-	-	- second	night Carriser (
	_	-				_
		Met.		300		
	RearCamber	RearToe	RearTota	alToe T	<u> </u>	
				-	,	
	thirdLeftCamber	thirdLentroe	thirdTota	iToe mirarug	Toe thirdR	ightCamber
	-1°04'	0°25	' -0°(12' 00	22' 3	°57′
	fourthLeftCamber	, dieli la	fourtosa	100		
				All		
	-0°53′	-0003	′ -0°′	10' - 0 2	3' -3	°52′
		۵	0			

References	Accuracy	Measurement Range	Total Range
Turning Angle	±0.08°	±22.5°	±45°
Track Width Difference	±0.03°	±2°	±8°
Front Setback	±0.02°	±2°	±4°
Maximum Turning Angle	±0.02°	±45°	±45°